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FOREWORD

This report presents the final results of one of the projects participating in the
military-effect programs of Operation Redwing. Overall information about this and
the other military-effect projects can be obtained from WT—1344, the “Summary
Report of the Commander, Task Unit 3.” This technical summary includes: (1)
tables listing each detonation with its yield, type, environment, meteorological con-
ditions, etc.; (2) maps showing shot locations; (3) discussion of results by programs;
(4) summaries of objectives, procedures, results, etc., for all projects; and (5) a
listing of project reports for the military-effect programs.
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\/ ABSTRACT

Soil samples were exposed to neutron radiation from Shot Cherokee to help establish
the importance of neutron-induced residual gamma radiation from a large-yield ther-
monuclear air burst. After exposure and recovery, the samples had no detectable
activity because the slant range to the nearest sample was nearly 3.5 miles, due to

an error in bomb drop. After this failure, an experiment was designed in the field

for Shot Yuma in order that induced-activity data could be obtained for a soil other
than Nevada Test Site (NTS) soil. Samples of sodium, manganese, and coral sand
from Site Sally were exposed above and below the surface at a slant range of 120 yards.
At this same station, gamma dose rates were measured and neutron detectors were
exposed by Project 2.51.

The full-field gamma radiation measured was due to a combination of fission-product
and neutron-induced activities, the only important induced activity being due to Naﬁ(n,@)h"'b‘
Na‘\‘, At 1.1, 3.4, and 10.9 hours after zero time, neutron-induced gamma radiation ac-
counted for 1.2, 1.1, and 0.8 r/hr of the measured 6.0, 2.2, and 1.2 r/hr. These values

were found to be within 50 percent of neutron-induced dose rates
*
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Chapter [/
INTRODUCT/ION

1.1 OBJECTIVE

This experiment was designed to provide data to aid the formulation of a method
for predicting the gamma-radiation field caused by air bursts. Specific objectives
were to measure the induced activity from a large-yield, thermonuclear air burst and
to exploit the opportunity offered for an investigation of activity induced in some soil
other than the soil of Nevada Test Site (NTS). When a bomb-drop error prevented any
data being obtained on Shot Cherokee, an additional experiment was set up on Shot Yuma
to obtain some data applicable to the second specific objective.

1.2 REASONS FOR EXPERIMENT

Certain military uses of nuclear weapons demand a minimum of residual contami-
nation. For example, it might be desirable to exploit the first shock of a nuclear burst
by having friendly troops occupy or pass through the ground-zero area soon after the
detonation. Although for practical purposes there is no local fallout from an air burst,
a considerable area around ground zero can be rendered radioactive by neutron bom-
bardment, and the gamma-radiation field thus produced can prove dangerous to persons
entering it hours later. The intensity and decay of such a gamma-radiation field will
depend on the kind of weapon, its yield and height of burst, and on the elements which
make up the soil around ground zero. This experiment was expected to provide data
for the evaluation of the military significance of neutron-induced activity.

1.3 BACKGROUND

Tests at the NTS have led to empirical methods for predicting neutron-~induced dose
rates from air bursts in the kiloton range over Nevada soil (References 1 and 2). These
methods attempt to predict 1-hour dose rates over any area within the test site. How-
ever, since no attempts have been made to correlate dose rates and decay rates with
the chemical composition of a variety of soils, the methods are valueless for any but
Nevada-type soil. Furthermore, since in Nevada soil the amount of sodium, the most
important contributor to induced activity, varies from area to area within the test site
by as much as a factor of four, the accuracy of such methods is severely limited even
for NTS.

A method for the prediction of induced activity which does account for chemical dif-
ferences in soils has been developed by Canu and Dolan (Reference 3). Before predic-
tions are made for a given soil, the amounts of over twenty elements in the soil must
be determined. The gold-neutron flux expected is also used to help establish intensities
at times of interest. However, this method has the following important shortcomings:

1. No allowance is made for the moderation of high-energy neutrons into the low-
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energy region. For most weapons and soils, this is the most important source of ther-
mal neutrons which cause most of the induced activity. Properties of soil elements
pertaining to this most important effect are ignored. Elements are weighted strictly
on the basis of the relative number of thermal neutrons they absorb.

2. No allowance is made for the distribution of activity with depth in soil nor for
properties of the soil constituents which influence this distribution.

3. The neutron spectrum is assumed to be invariant with slant range and weapon
type.

In other respects, too, this method was developed from unrealistic assumptions.
From a practical standpoint, however, the shortcomings above are the most important.

1.4 PREDICTION METHOD

A prediction method (Reference 4) has been developed which requires the following:

1. Soil Data. Soil density (gm/cma) and percentage by weight of Na, Mn, Al.

2. Neutron Data. Gold neutrons versus slant range and total number of 14-Mev
neutrons per kt produced external to the case.

1.4.1 Basic Theory. Briefly, the theory for this method is developed as follows:

Ny = time-integrated neutron density from an isotropic source in air through
a thin layer of soil at the surface
N = time-integrated neutron density through a thin layer at depth X below the
surface
Then,
N = f(X)N, (1.1)

where f(X) depends on the soil and the incident neutron spectrum.
The number of neutrons absorbed by a particular isotope in a layer of unit area dx
thick at depth X is

where p; is the number of atoms per unit volume of an isotope (considered constant with
depth), and k;(X) depends on the capture cross section for this isotope and the neutron
spectrum at X.

The contribution made by the radioactive daughter of this isotope to the residual
gamma-radiation field above the surface is

~ At
dlj = gi(X)dmje ! (1.3)
The gamma-ray attenuation function, gi(X), depends primarily on the density of the
soil and the energy of gamma radiations from the radioactive daughter. When there
is no gamma-emitting daughter, g;(X) = 0. '

Radiation of the s0il by neutrons is considered to be instantaneous att = 0. No
daughter-daughter gamma-emitting products are considered since the neutron-induced

10
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radioisotopes of interest give rise to stable daughters.
From Equations 1.2 and 1.3

Y
Ij = Nopge itfgi(X)fi(X)ki(X)dx (1.4)

For a particular soil and incident neutron spectrum, the integral is a constant, and

— Ayt
Ii = NoKjpie

(1.5)
where Kj is a constant. When a number of gamma-emitting radioisotopes are formed,
the dose rate above the surface is given by

-t -t —Ant
I=N, [p,xle "+ pyKye ML +paKpe "n] (1.6)

This equation describes the dose rate at any time only for a given soil and incident
neutron spectrum. Different K values may be expected for each different soil and
spectrum combination.

1.4.2 Neutron Spectra. Although neutron spectra vary both with slant range and
weapon type, spectra from all weapons nevertheless seem to approach the same equi-
librium spectrum as slant range increases, so that for slant ranges greater than 900
yards there is invariance with slant range and weapon type.

Before this equilibrium spectrum is established, the spectrum is always softer
(relatively more gold neutrons). In general, both the degree of softness and the slant
range necessary to establish the equilibrium condition are greater for weapons having
the largest amounts of high explosive. In this method, corrections are made for changes
in spectrum when they occur.

1.4.3 Soil Differences. To establish those characteristics of soils which must be
considered to give a reasonable degree of prediction accuracy, extremes in the amounts
of important soil elements were considered. The influence of each element on the over-
all moderating or slowing-down power of soil was assessed, as was the importance of
each element for absorption of thermal neutrons. Gold neutron measurements versus
depth in Nevada soil served to evaluate the importance of build-up caused by modera-
tion, so that relative dose rates could be calculated for extreme cases.

The moderating power of a soil is determined by its amount of hydrogen, the main
source of hydrogen being the moisture content of soil. However, a compensating effect
causes dose rates measured above the surface of soil to be fairly insensitive to the
actual amount of hydrogen (over the expected range of hydrogen abundance or moisture
content). When the hydrogen content is high, build-up of low-energy neutrons occurs
closer to the surface, but the diffusion length (L) of thermal neutrons thus formed is
correspondingly shorter, a factor which causes faster decay with depth. For a low
hydrogen content, build-up near the surface is less; but the decay of thermal neutrons
with depth is also less (larger L). However, activity produced near the surface must
be considered more important than like amounts at greater depths, since emitted gam-
ma rays must penetrate the soil overburden. Thus, without calculation, it is not ob-
vious to what extent such a compensating effect operates.

Figure 1.1, reproduced from Reference 4, shows the extremes expected in relative
dose rates for soils with differing amounts of hydrogen. These extremes were calcu-

11
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lated by choosing quantities for other elements found in soil which would maximize or
minimize the value of L but would not exceed the expected range of abundance of any
element. The relative standing of NTS soil is also shown in the figure. For the equi-
librium spectrum, the figure shows that dose rates for soils containing equal amounts
of those elements which lead to gamma emitters on (n, v) reaction could be, at most,
30 percent higher or 56 percent lower than those at NTS.

Since neutron spectra from weapons can be softer than the equilibrium spectrum, a

:: /{ TN ‘ Max L

08 /
o NTS Soit)

o.e

Rel Dose Rate

J/'Mil\ L

0s o
O4— ’/ .
4

0 | 2 3

% Hydrogen by Wt

Figure 1.1 Dose rate versus hydrogen content.

similar evaluation of extremes for a 100-percent thermal neutron source was made. It
was shown that dose rates for a straight thermal neutron source would be, at most, 20
percent higher or 35 percent lower than for NTS soil.

From the evaluation of these extreme situations, it was concluded that neutron-
induced dose rates can be predicted with reasonable accuracy with only a knowledge of
those elements which produce gamma-emitting radioisotopes. That is, for a given
spectrum, one set of K's may be used in Equation 1.6 for all soils.

1.5 SUMMARY OF PREDICTION METHOD

Only three terms will be needed in Equation 1.6, one each for sodium, manganese,
and aluminum. Assuming that capture cross sections for these three elements have
similar behavior with neutron energy, for the equilibrium spectrum Equation 1.6 may
be written:

i

= pngK [(% Na)e“"1t +24.7 (% Mn)e_}‘2t +60.3 (% Al)e_}‘at ] (1.7)

Where: p = density of soil (gm/cm®)
n, = gold neutron measurement or estimate (ng ~N, for a given spectrum)
K =3.93%20.15x10"18 (evaluated from NTS results)

12
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&
I

percentage by weight of element

Ay = 0.046/hr
A, = 0.266/hr
Ay = 18/hr
The numbers 24.7 and 60.3 in the equation give added weight to the manganese and alu-
]
8

Correction Factor , Y(r)
0

1 2 3 4 ] 6 7 8 9 10
Spectrum Change,X(r)
Figure 1.2 Corrections for variations in neutron spectrum.

minum relative to sodium on the basis of capture cross section, half-lives, atomic
weights, and gamma energies per disintegration.
Then, for some other slant range, r,

I, = Y(r)lrlx;_,e(r,-r)/zoo (1.8)

where Y(r) =1. The factor Y(r) accounts for the effect of a spectrum which is softer
than the equilibrium spectrum. Y(r) is a function of X(r) where

. _(rn))y  (r-ry)/200
X(r) —_—(rlno)rl e 1.9)

The factor X(r) is the ratio of the surface thermal-neutron density actually measured
or predicted for slant range, r, to that which would exist at r if the equilibrium spec-

trum obtained between r and r;. Because of the importance of build-up of thermal
neutrons below the surface,

13
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X(r) = Y(r)

Figure 1.2 is a plot of Y(r) versus X(r) calculated by assuming that the relative impor-
tance of build-up is inversely proportional to X(r). That is,

X(r)qx)y = a(x)p,

where q(x)r1 is the build-up for equilibrium spectrum. The correction factor shown is
for a low H content and is therefore conservative. That is, errors will occur from
overestimating, not underestimating, dose rates. For modern weapons with small
amounts of high explosive, X(r) will probably never exceed three.

14
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Chapter 2
PROCEDURE

Shot Cherokee, a 3.5-Mt air burst to be detonated 5,000 feet over Site Charlie, was
chosen to investigate induced activity from large-yield, thermonuclear weapons. The
ten types of soil used on Shot 5 of Operation Teapot (Reference 4) were exposed to the

neutron flux from Shot Cherokee near each of three neutron-detector stations of Proj-
ect 2.51, located at 80, 1,250, and 2,500 feet from the intended ground zero. Also
exposed at each station were a sample of coral sand taken from the island and one sam-
ple each of sodium and manganese in the form of salt (NaCl) and manganese dioxide
(MnO,). The latter were included so that a long delay in sample recovery would not
result in a loss of all data.

All samples were exposed in watertight steel containers attached by 5/“ -inch aircraft
cable to large eyebolts set in concrete. The soil sample container was covered with
coral soil so that the neutron spectrum incident on the soil samples would be typical of
that 1 to 4 inches below the surface. This was thought to be the depth range for maxi-
mum thermal neutron density.

Recovery was made at H+ 6 hours by helicopter, and all samples were taken to Site
Elmer where the soil samples were measured with a gamma-ray spectrometer. Dose-
rate measurements were made at each of the three stations by the recovery crew.

When the results expected from Shot Cherokee were not obtained, Shot Yuma, a 0.19-
kt burst on a 200-foot tower at Site Sally, was chosen to investigate the effect of neutron-
induced gamma-radiation fields on a soil different from Nevada soil. Samples of NaCl,
MnO,, and coral soil from the island were exposed at 100 yards ground range near Sta-
tion 253.08 of Project 2.51. Six samples were exposed, each of the three materials in
a steel container about 3 inches above the ground and each in a thin aluminum container
about 1 inch below the soil surface. The activity of the recovered samples was meas-
ured in a gamma spectrometer, and the resulting spectra were determined as functions
of time for all samples. The dose rate near Station 253.08 was measured by a Rad-Safe
helicopter hovering at 25 feet at H+ 1.1 hours and by ground crews at H+ 3.4 and H+10.9
hours.

The gamma spectrometer used was the 20-channel differential pulse-height analyzer
manufactured by the Atomic Instrument Company, equipped with their Model 810 scintil-
lator head, which contained a 2-inch diameter Nal well crystal. The primary calibration
was made with chemically pure NaCl and MnO, activated in the Los Alamos Laboratory’s
water-boiler reactor. Properties of the sample holder were minimized by substitution;
the same kind were used to obtain the final data and for the calibration runs. Calibrations
were made with the pure materials and witha mixture of pure materials and coral soil.
Calibrations involved about 2,000 counts per channel; final data runs, about 1,000. It
should be noted that the spectrometer required too much maintenance to be entirely satis-
factory.

15
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Chapter 3
RESULTS

Because of a bombing error, the estimated slant range from Shot Cherokee burst point
to the nearest station on Site Charlie was 3.5 miles. There was no detectable activity
in any of the samples when measured at H+ 7 hours. Gamma dose rates at Site Charlie
were background only.

Chemical analysis of two Site Charlie soil samples indicated their sodium content to
be 0.11 and 0.16 percent by weight, while one sample from Site Sally indicated 0.15-
percent sodium by weight. In Table 3.1, these values are compared to several values
determined for NTS soils.

The two samples of coral soil exposed to Shot Yuma showed only Na?* activity when
first measured at H+ 5 hours. In Table 3.2, a summary of data on activity induced in
the six samples is given. Activities are given in dis/min-gm of sample, extrapolated
to zero time. The kinds of activity present were identified by the energies and half
lives of gamma radiation emitted. The probable error in these activation data is + 5
percent. Figures 3.1 through 3.3 show sample records for coral soil, NaCl and MnO,.

Dose rates measured after Shot Yuma near Station 253.08 are shown in Table 3.3.
Gold neutron measurements made on Shot ma are summarized in Figure 3.4 (Refer-
ence 5).

TABLE 3.1 SODIUM AND MANGANESE CONTENTS OF
VARIOUS TEST SITE SOILS

Location Sodium Manganese

pct by weight pect by weight

Center, Site Charlie 0.16 —_
Shore, Site Charlie 0.11 —_
Station 253.09, Site Sally 0.15 —_
Area 1, NTS 1.25 0.158
Area 2, NTS 0.43 0.027
Area 3, NTS 1.60 0.024
Area 4, NTS 0.95 0.032
Area 7, NTS 1.84 0.045
Area 7, NTS 1.81 0.047
Area 7, NTS 1.33 0.030
Area F, NTS 0.62 0.023
16
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Counts/min

103

Channel

TABLE 3.2 SAMPLE ACTIVATION DATA, SHOT YUMA

Kind of Ratio
Sample Activity Above Surface Below Surface Below/Above
dis/min-gm dis/min-gm
Coral Na?4 5.09 x 10° 9.81 x 10° 1.93
NaCl Na® 5.73 x 10 1.34 x 10° 2.34
MnO, Mn® 5.32 x 10° 1.18 x 10% 2.22

TABLE 3.3 DOSE RATES NEAR STATION 253.08, SHOT YUMA

. Dose Rate 3 ft
Time Above Surface Method

x/hr
H+ 1.1 hr 6 Inferred from 25-ft helicopter measurement
H+ 3.4 hr 2.2 Ground monitor reading
H +10.9 hr 1.2 Ground monitor reading using AN/PDR-T1B
1.4 Mev
¥
\
S
7
20 40 60 80 100
Channels

Figure 3.1 Sample of coral soil data.
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Figure 3.2 Sample of NaCl data.
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Figure 3.3 Sample of MnO, data.
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Figure 3.4 Shot Yuma gold neutrons versus slant range.
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Chapter 4
DISCUSSION  and  CONCLUSIONS

4.1 DISCUSSION

By comparing Na?4 activities in the coral and NaCl samples (Table 3.2), the percent
by weight of Na in coral was determined to be 0.31 + 0.03. This is twice the amount
determined by chemical analysis (Table 3.1). The Na® activity must be assumed to be
due to Na® (n, y) Na¥, since neither coral nor NaCl contains enough Al or Mg to produce
competitive amounts of Na? by (n,a) or (n, p).

For such small amounts of sodium, it is believed that the comparative activation
method is the more accurate. This could imply a consistent chemical error, because
two other samples of coral from Site Charlie (Namu Island, Bikini) show 0.16 percent
and 0.11 percent by chemical analysis. It is also possible that the sodium content in
coral may vary by as much as a factor of two within a small area.

From Equations 1.7, 1.8, and 1.9 and the neutron measurements of Project 2.51,
dose rates were calculated at 1.1, 3.4, and 10.9 hours after zero time. Results are
shown in Table 4.1.

The greatest slant range at which a gold neutron measurement was made for Shot
Yuma was 604 yards. In order to make a dose rate calculation by the method of Refer-
ence 4, it must be assumed that the equilibrium spectrum was established at 604 yards
slant range. On the basis of experience with devices containing small amounts of high
explosive, this assumption is reasonable. The dose rate was calculated (Equation 1.7)
for 604 yards slant range with nyg = 1,05 X 10! and p = 1.6 gm/cm’. For dry coral,

p = 1.3, while for coral completely saturated with water, p = 1.8 gm/cm’. The value
1.6 is an estimate of conditions at shot time. X(r) was calculated (Equation 1.9) to be

2 for 120 yards slant range; hence Y(r) = 1.5 from Figure 1.2. Equation 1.8 was then
used to calculate dose rate at 120 yards slant range. As seen in Figure 4.1, measured
dose rates do not show the decay with time characteristic of Na®®. Since Na% was the
only important induced activity found in coral, it was concluded that measured values
were the result of superimposition of the 15-hour half-life Na* and t~!-? fission product
activities. A least-squares fit applied to the dose rate versus time data implied fission
product contributions of 4.7, 1.2, and 0.3 r/hr, and Na?¥ contributions of 1.2, 1.1, and
0.8 r/hr at H+ 1.1, 3.4, and 10.9 hours (Figure 4.1). This analysis seems consistent
with the measured values.

When the amount of sodium used for coral is that determined by the comparative
activation method, calculated values range from 1.33 to 1.25 times the values inferred
from field measurements. When the chemically determined value for sodium is used,
inferred dose rates are 1.50 to 1.6 times the calculated dose rates. This suggests that
the correct average sodium content for coral lies somewhere between 0.15 and 0.31
percent. However, errors implicit in the prediction method and in field measurements
of dose rates do not allow confidence in this deduction.

Measured dose rates are probably subject to + 25-percent error, and the estimated
probable error in prediction method is +30 percent. Assuming that these are the major
sources of error, agreement between calculated and measured dose rates is subject to
probable error of + 40 percent.
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TABLE 4.1 COMPARISON OF CALCULATED AND MEASURED DOSE RATES

]
¢ Contribution of Neutron- Calculated Calculated
Time After Measured
Zero Time Dose Rate Induced Radiation to Dose Rate Dose Rate
° Measured Dose Rate 0.31 pct Na 0.15 pot Na
hour r/hr r/hr r/hr r/hr
1.1 6.0 1.2 1.6 0.8
3.4 2.2 1.1 1.4 0.7
10.9 1.2 0.8 1.0 0.5
]
- AN
N O Least-~Square Values
CL 4 Measured Values
o.'l \
£ N
S \ 8
@
Ll
€ |—
é
2
8 | NA”
N
SN
Fission s
Products 0
- 0.2
2 49 6 8 10 12 (L]

Time , Hours

Figure 4.1 Least-square values compared to measurements.
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The build-up of thermal neutrons with depth in soil is indicated by the relatively high
activity of buried samples; however, activity differences between buried and unburied
samples are greater than expected. The samples which were exposed above the surface
may have been shielded somewhat by the sandbags which were used by Project 2.51 to
hold their detectors off the ground, AMhough the samples were between the sandbags
and the device, shielding could still be significant because low-energy neutron flux is
nearly isotropic.

4.2 CONCLUSIONS

The difference between the effects of pure fission and fission-fusion neutron spectra
on induced activity in soil was not measured, since the soil samples on Shot Cherokee
were not activated. However, a method for predicting neutron-induced gamma-radiation
intensities (Reference 4) was tested for coral soil on Shot Yuma. Predicted values were
within % 50 percent of induced dose rates inferred from field measurements.
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